If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2=59
We move all terms to the left:
k^2-(59)=0
a = 1; b = 0; c = -59;
Δ = b2-4ac
Δ = 02-4·1·(-59)
Δ = 236
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{236}=\sqrt{4*59}=\sqrt{4}*\sqrt{59}=2\sqrt{59}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{59}}{2*1}=\frac{0-2\sqrt{59}}{2} =-\frac{2\sqrt{59}}{2} =-\sqrt{59} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{59}}{2*1}=\frac{0+2\sqrt{59}}{2} =\frac{2\sqrt{59}}{2} =\sqrt{59} $
| (2*s+7/6)-(2*s-9/10)=3 | | 14+k=7 | | 4/5+x=43 | | 3(-x+4)-14=58+3x | | 10x-12=-32 | | 3+i/2i=0 | | X+-1=-2x+2 | | 14=x÷6 | | 2x^2−x−6=0 | | x.6=-8 | | 2-(18/(x^2))=0 | | 4.3x+23=2.3x+21 | | 8x/3+42=2x/3+33 | | 2(6x+5)-7x=2x-2 | | 4b+6(b+3)=8(2b+6) | | G(x)=6-5x | | 4x+3=2x-13 | | 7/x=10-x/3 | | -19=3-8n-3 | | G(x)=6x-5x=4 | | e-14=19 | | 3-(147/(x^2))=0 | | 3(n+5)=2n-10 | | x^2+.01=0 | | 5x-(x+1)=2x+5 | | 25x2-25x+6=0 | | 11x+3=-2/5 | | -z-1(-z-6)=8 | | t=(75)(500)(5) | | 6x+4-4=0 | | -z-(-z-6)=8 | | 5+5x+4=24 |